1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The implementations of `Rand` for the built-in types.

use std::char;
use std::mem;

use {Rand,Rng};

impl Rand for isize {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> isize {
        if mem::size_of::<isize>() == 4 {
            rng.gen::<i32>() as isize
        } else {
            rng.gen::<i64>() as isize
        }
    }
}

impl Rand for i8 {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> i8 {
        rng.next_u32() as i8
    }
}

impl Rand for i16 {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> i16 {
        rng.next_u32() as i16
    }
}

impl Rand for i32 {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> i32 {
        rng.next_u32() as i32
    }
}

impl Rand for i64 {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> i64 {
        rng.next_u64() as i64
    }
}

impl Rand for usize {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> usize {
        if mem::size_of::<usize>() == 4 {
            rng.gen::<u32>() as usize
        } else {
            rng.gen::<u64>() as usize
        }
    }
}

impl Rand for u8 {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> u8 {
        rng.next_u32() as u8
    }
}

impl Rand for u16 {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> u16 {
        rng.next_u32() as u16
    }
}

impl Rand for u32 {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> u32 {
        rng.next_u32()
    }
}

impl Rand for u64 {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> u64 {
        rng.next_u64()
    }
}

macro_rules! float_impls {
    ($mod_name:ident, $ty:ty, $mantissa_bits:expr, $method_name:ident) => {
        mod $mod_name {
            use {Rand, Rng, Open01, Closed01};

            const SCALE: $ty = (1u64 << $mantissa_bits) as $ty;

            impl Rand for $ty {
                /// Generate a floating point number in the half-open
                /// interval `[0,1)`.
                ///
                /// See `Closed01` for the closed interval `[0,1]`,
                /// and `Open01` for the open interval `(0,1)`.
                #[inline]
                fn rand<R: Rng>(rng: &mut R) -> $ty {
                    rng.$method_name()
                }
            }
            impl Rand for Open01<$ty> {
                #[inline]
                fn rand<R: Rng>(rng: &mut R) -> Open01<$ty> {
                    // add a small amount (specifically 2 bits below
                    // the precision of f64/f32 at 1.0), so that small
                    // numbers are larger than 0, but large numbers
                    // aren't pushed to/above 1.
                    Open01(rng.$method_name() + 0.25 / SCALE)
                }
            }
            impl Rand for Closed01<$ty> {
                #[inline]
                fn rand<R: Rng>(rng: &mut R) -> Closed01<$ty> {
                    // rescale so that 1.0 - epsilon becomes 1.0
                    // precisely.
                    Closed01(rng.$method_name() * SCALE / (SCALE - 1.0))
                }
            }
        }
    }
}
float_impls! { f64_rand_impls, f64, 53, next_f64 }
float_impls! { f32_rand_impls, f32, 24, next_f32 }

impl Rand for char {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> char {
        // a char is 21 bits
        const CHAR_MASK: u32 = 0x001f_ffff;
        loop {
            // Rejection sampling. About 0.2% of numbers with at most
            // 21-bits are invalid codepoints (surrogates), so this
            // will succeed first go almost every time.
            match char::from_u32(rng.next_u32() & CHAR_MASK) {
                Some(c) => return c,
                None => {}
            }
        }
    }
}

impl Rand for bool {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> bool {
        rng.gen::<u8>() & 1 == 1
    }
}

macro_rules! tuple_impl {
    // use variables to indicate the arity of the tuple
    ($($tyvar:ident),* ) => {
        // the trailing commas are for the 1 tuple
        impl<
            $( $tyvar : Rand ),*
            > Rand for ( $( $tyvar ),* , ) {

            #[inline]
            fn rand<R: Rng>(_rng: &mut R) -> ( $( $tyvar ),* , ) {
                (
                    // use the $tyvar's to get the appropriate number of
                    // repeats (they're not actually needed)
                    $(
                        _rng.gen::<$tyvar>()
                    ),*
                    ,
                )
            }
        }
    }
}

impl Rand for () {
    #[inline]
    fn rand<R: Rng>(_: &mut R) -> () { () }
}
tuple_impl!{A}
tuple_impl!{A, B}
tuple_impl!{A, B, C}
tuple_impl!{A, B, C, D}
tuple_impl!{A, B, C, D, E}
tuple_impl!{A, B, C, D, E, F}
tuple_impl!{A, B, C, D, E, F, G}
tuple_impl!{A, B, C, D, E, F, G, H}
tuple_impl!{A, B, C, D, E, F, G, H, I}
tuple_impl!{A, B, C, D, E, F, G, H, I, J}
tuple_impl!{A, B, C, D, E, F, G, H, I, J, K}
tuple_impl!{A, B, C, D, E, F, G, H, I, J, K, L}

macro_rules! array_impl {
    {$n:expr, $t:ident, $($ts:ident,)*} => {
        array_impl!{($n - 1), $($ts,)*}

        impl<T> Rand for [T; $n] where T: Rand {
            #[inline]
            fn rand<R: Rng>(_rng: &mut R) -> [T; $n] {
                [_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*]
            }
        }
    };
    {$n:expr,} => {
        impl<T> Rand for [T; $n] {
            fn rand<R: Rng>(_rng: &mut R) -> [T; $n] { [] }
        }
    };
}

array_impl!{32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,}

impl<T:Rand> Rand for Option<T> {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> Option<T> {
        if rng.gen() {
            Some(rng.gen())
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    use {Rng, thread_rng, Open01, Closed01};

    struct ConstantRng(u64);
    impl Rng for ConstantRng {
        fn next_u32(&mut self) -> u32 {
            let ConstantRng(v) = *self;
            v as u32
        }
        fn next_u64(&mut self) -> u64 {
            let ConstantRng(v) = *self;
            v
        }
    }

    #[test]
    fn floating_point_edge_cases() {
        // the test for exact equality is correct here.
        assert!(ConstantRng(0xffff_ffff).gen::<f32>() != 1.0);
        assert!(ConstantRng(0xffff_ffff_ffff_ffff).gen::<f64>() != 1.0);
    }

    #[test]
    fn rand_open() {
        // this is unlikely to catch an incorrect implementation that
        // generates exactly 0 or 1, but it keeps it sane.
        let mut rng = thread_rng();
        for _ in 0..1_000 {
            // strict inequalities
            let Open01(f) = rng.gen::<Open01<f64>>();
            assert!(0.0 < f && f < 1.0);

            let Open01(f) = rng.gen::<Open01<f32>>();
            assert!(0.0 < f && f < 1.0);
        }
    }

    #[test]
    fn rand_closed() {
        let mut rng = thread_rng();
        for _ in 0..1_000 {
            // strict inequalities
            let Closed01(f) = rng.gen::<Closed01<f64>>();
            assert!(0.0 <= f && f <= 1.0);

            let Closed01(f) = rng.gen::<Closed01<f32>>();
            assert!(0.0 <= f && f <= 1.0);
        }
    }
}